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Abstract

A regenerative sampling plan is proposed for the sequential comparison of

two populations having positive integral response. It is designed to be both

an extension and an improvement of the play-the-winner rules for binary trials

in the sense that a much wider variety of responses is allowed, the fraction of

inferior selections approaches zero, and the play-the-winner rule is contained

as a special case. Almost sure convergence and moment convergence in the pth

order is studi d for the fraction of inferior selections and for a maximum

* olikelihood estimator of the mean response. A conditional test of hypothesis is

given for the binary case.
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Section 1. Introduction

The problem of sequentially sampling two populations with unknown means so

that the sum of observations is maximized has been formulated by Robbins

(1952). For the binary case (success/failure trials), play-the-winner

strategies have been shown to produce better results than a random selection of

populations, in the sense that the fraction of inferior selections approaches

the constant q/(qA+qB) where o < qB are the failure probabilities (Robbins

(1952), Zelen (1969), Wei and Durham (1978)). A randomized play-the-winner

plan has been used for the assignment of patients to treatments in a controlled

clinical study of a potentially life-saving medical procedure because of its

tendency to put more patients on the better treatment (Bartlett et al (1985),

Cornell et al (1986)).

The purpose of this paper is to present a sampling procedure in which the

fraction of inferior selections approaches zero, in general, whenever the ob-

served response is a positive integer-valued random variable. The main idea is

to generate new samples on the two populations according to the cumulative

response observed on each, as is done with the play-the-winner rules, but modi-

fied so that the sample sizes for the two populations are independent. The

successive samples then correspond to the generations of two independent

Galton-Watson branching processes and the attendant limit theory applies.

.9 Based on the observed successes on the two populations with a binary response,

a conditional test of hypothesis is given along with explicit bounds on the

p-.;er function. While other methods for dealing with the binary trials exist

in which the fraction of inferior selections go to zero (Bather (1981)), they

dl,) not seem to have as tractable an inferential structure.

I..
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Section 2. Regenerative Sampling with a Positive Response

A sequence of stopping times called generation points are defined for the

observations on each population independently of the observations on the other

population. For the population i = A,B, let RRR.. be independent

and identically distributed (i.i.d.) random variables taking positive integer

i
values having a common mean, mi. The Rk correspond to the observed

responses on population i. Beginning with an initial sample of size ui, a

positive integer, the sequence T1 of generation points are defined by
( un

11
T i

T U + R R for n > 1.

n+l i 1 +  T
n

Note that the generation points are defined separately for each population

and the detailed specification of the order of selection is left open. It will

be seen that the observations between g, eration points

0 i
(2) 0 = u

(2Z i 
= Ti  - Ti  for n > 1,

n n+l n

form the generations of independent Galton-Watson branching processes for

i = A,B, regardless of how the samp'es are ordered.

The sampling scheme with random sampling order within each generation

may be visualized as an urn model:

Two urns are given; Urn I, a sampling uw, and Urn II, a holding urn.

Initially, u balls of type A and uB balls of type B are placed in the

sampling urn. To begin the first generation of sampling, a ball is drawn at

random from the sampling urn and its typr note.1. An observation is then made

:.
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on the population indicated and the response, R > 1 is recorded. A total of

R balls of that type are then placed in the holding urn. The process is re-

peated until the sampling urn is empty. That is the end of the first genera-

tion of sampling. To begin the second generation, all the balls in the holding

urn are placed in the sampling urn and sampling begins anew. The analysis to

follow is based on the ball populations at those points where the sampling urn

becomes empty. They are the generation points, T
n

Theorem 1: Assume mA > mB. Then as n tends to infinity, the fractions of

inferior selections

- . TB:(
n

n n
-. (3 )B

-"*'" A  ZB

'.5n n

approach zero with probability one.

Proof. Temporarily suppressing the population superscript i for A,B let

Zn = Tn+1 - Tn  be the nth stage sample size. Then Zn  may be expressed as

Xn +'".+ X n where Xk -RT+k are iid with R1  and independent of
n-l' ,n

Zn1l n > 1. Thus Z represents the nth generation of a Galton-Watsono-l n

branching process initiated by Z0 = u ancestors and having offspring distri-

bution equal to that of R (Harris (1963)). The generation points

Tn~ Z +..+Z are the cumulative progeny up to the nth generation. It
n 0 n _

follows that the expected generation size is

um if m< ER

(4) EZ m EF~ {4 n  I
CO'-. if M = O

and the average sample number (ASN) is

eq.-
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nu if m= 1

(5) ASN =ET= uif < and m > 1

O if M=

To prove (3), we first note that by assumption mA > > 1, we can choose an

integ:pr M so big that

.6) m* E n A > mB"
[R (

Let R* F I and define T ,Z in a similar manner with u, = uA

Then for all n > 1

(7) T" *.T**
(7) n -  n"

Z* ZB
z zB

Next, it is wcll-know .n that (n, n>l] and (-, n>l} are martingales.n -n -

m , ZB , B

Z zB
nn

Since E -- = uA < c eand E wuB < ro by the nartingale convergence
n An

in* nB
*B

Z z
theorem, -- an n converge with probability one to random variables W*

B n

and WB  respectively as n tends to infinity. Furthermore, since R* < M,

W is a strictly positive random variable with probability one. In view of

Sn+l 1 n , !
(8) -* z .i

=n+l m, 0 n-j /
nn A

T /Im, converges to T /(m,-l) with probability one as n tends to infinity.

Similarly if B > 1, T, /mn converges to WB/(mB-I) with probability one and

if = , TB =nuB. Next, choose X such that X c(mB,m,); then by (7)

Sn
.ro.•
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(9) n < , B

. n n n nT;+T" T T

"'- ii ( n n
MB

M': T T"
n[ n-m mB n

n nB

M*

which goes to zero with probability one as n tends to infinity. This also

implies that ZB = o(nA ) = o(Tn + ZA ) with probability one since
n nil n n

TB 
ZB

(10) n+l n

n+1 n+1 n+I n

As a result, it follows that

Z B ZB

IzA + Z B TA T + zB

n n n+l n n

converges to zero with probability one as n tends to infinity.

The following corollaries show that favorable comparisons need not be res-

tricted to the same generation points on the two populations.

d d
Corollary 1: If mA > mB for some positive integers dA and dB, then

TBndB

TA + TB
nd nd

A B
(12)

TB~T
nd B (n-l)dB

A A B B
T -T + T -Tnd (n-l d ndB (n-l)B

- C.I..

".. A _ A T

"--n A (-O AN% Tnld
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converge to zero with probability one as n tends to infinity. In particular

i f minB< iA=w then for any positive integer d,

TB
nd

T+TBn nd

K T B TB

(13) TB ~ TB
n (n+l)d nd

converge to zero with probability one as n tends to infinity.

Corollary 2: if A >m for some positive integers dA and dl then as

n tends to infinity

T. nd ndA O B /mA

(14)B A~B )/TTA ) E d

,B nd (n+l)dA nd A MB /mA

with probability one.

Corollary 3: If mA > nB then for any p > 0, as 

TB
E( n

(15)
B B

- E( A n B )p n0

"']"" z~A B(~ n

z + Zn n

dA dd
if m > m B fr some positive integers dA and d thnn for any p >0,

mA A B'

as n

= ( SB/t 
n

.-4-- 1

e'q:'? T(~~B-T%/( ~~ A %=0(B/~A n



- - T
Br

B
nd 

Bv. <' • . . .. E(A %ldB )P 0,

TA +TB
ndl nd

A B
(16)

TB TB
(n+l)clB ndB

TA +TB TB
(n+l)d nd (n+l)d nd

A A B B

If mA > mB, then for any positive integer d and any p > 0, as n 4

n( d p 0 .
TA + TB
n nd

(17)

E( n+l)d n- )P 0.A B B
-n + T(n+l)d T nd

Remark 1. It may be expected that E(T-B /Yn )P 4 0 under general conditions.
n n

17nwever we have only been able to prove it in the very special case of success/

failure trials (see Section 4, Theorem 6).
A A B B

Renark 2. The independence of (RIR 2 .... and {RR 2 .... is not

necessary for the results in Theorem 1 and Corollaries 1,2 and 3 to hold.

The results also include the cases when either mA = or mB= 1 or both.

A A K K
Remark 3. If there are K processes {RI,R 2 F ... ,R_,R 2 ....} with

means mA,..... mK  respectively, and if mA > max(mB,...,mK), then the results

TBB
in Theorem 1 and Corollaries 1,2 and 3 will still hold when TB and Z are

B B K B C K
replaced by T + T +. ..+ T and Z + Z +...+ Z respectively, and the

*dA dB

conditions in the corollaries are changed from that of mA > m B  to that of
A dB d

mA  > max(m B ... m

,. %



Se-ction 3. Estiimation in a INo.no)tonic Bran ci P~rocess

In this section w2 shall study the estimation of somec of the parameters of

the sep:trate populations, specifically the mean responses mn and the

varince ~?,i B. As each separate population follows,, a Galton-Ja7t son

branchingi process, we shall suppress the superscript and sbciti. Let

R, P.1 ... be iid-J positLive integer-valued random variables with ER =m. Let

- - u be a positive integer and

(1T T 0 , 2, u and 11 U.

For: n > 1, define

Z R_ ++Pn n1 +1 n

(19) T 1  =u-~ + . + +,,

0 n

Ntic tha 2 0. , arnd for this reason we shall call this

c-elton--wlatson branching process a monotoni branching pi.c-ss For each

n > 0, let F n be the a-field generated by [ZQ, ...fZ01n For the mean m,

w-, shall1 consider the following two estimators

T n- lu

n
ow (20)

rr~n z_

*n

7t*. C-i~tr Sr Ilko in the literature. See Dion and Keiding

a. thC: ref rocsthere in. Thec estir ,Itor m i a maiLMlikelihood

nr
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Fact 1. Assume m < . Then with probability one, as n ,

(i) m - m,
mn M

(21)

(ii) m -4m.
n

In the following, we shall study the L p-consistency of mn and mn .

Definition. e is an L -consistent estimator of e for some p > 1 if as"_ __.- np-
n -

(22) EI(en-G) I p  0.

To establish the L -consistency, we first develop a few results which are
p

interesting in their own right.

Theorem 2: Assume that ERp < for some p 1. Let a 1max(,'). Then

Z n+1
(23) {Iz -( - m)1p , n > 1 is uniformly integrable.

n

Proof. We decompose, for some K,

(4 R-m= (RI- ERI ) + (RnI - ERI
(24) Rn-m (RnI[R n<K] ERn [R n<K n [R n>K] n [R n>K]

-X + Y say.
n n

Since ERp < , for all c > 0, we can choose K so that

.. . (25) EJY n IP <

"-'.First, let s > max(2,p). Then by the Narcinkiewicz-zygmund inequality (see,

0 ,e.g. Chow and Teicher (1978), p. 356), for some constant B

9'

-,-... . . ......,'........-...-- -. -- .--.-, .-v, -,.-. ,-,.,-.> .-.. ,.. <. ., "... --- . . .
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XT +1+...+XT

(26) E n 
a

n

nEE(- --IXT +1- -- .+XT I sIF +)

Zas n n+I

s sn n+1 n
n

Therefore

(27) n zn+l n _4 is uniformly integrable.

n

Next, consider the Y's. By the same Marcinkiewicz-Zygmund inequality, we have
YT " +YT p

(28) E n+l

n

B _ E 2 . 2 )p/2E((YT + 1' y TIFn)

(2)ap n +l

n
p p p

B E( E( +1T +i "" IF) i

p Zap n n+l
n

"zp/2-1 Bp E( n E(IYT +IP +...+I llF )), if > 2,
P Z ap  Tn +

n

< B p c E n p i
-p Z -p T n p' + .+YTn 1II

n

*which can be made arbitrarily small. Therefore

4' - . . .



YT +I'1+
(29) a n+ > 1 is uniformly integrable.

Ir n
Combining (27) and (29), we have the desired result (23).

Corollary 4: If EP < -for some r 1, then

(i) ['In mlP, n > 1} is uniformly integrable.
(30)

(ii) {lm -mlP, n > 11 is uniformly integrable.
n

Proof. (i) Since In - mjP < lz n( - mP,(Z > 1 and a < 1),

the result follows from Theorem 2.

(i) By (i), {lii n JP, n > 11 is uniformly integrable. We note that

T T +Z Z Z
(3) n+l _nn n < _1_n

T T T - Zn n n n-i

Therefore UT n > 1) is uniformly integrable and it follows that
n

T -u p
(32) Tj~ ml ,n > 11 is uniformly integrable.

n

Corollar 5 Assume ERP < - for some p l. Then as n

(i) Elm -mIp -* 0, L -consistency,
P

(33)

(ii) Elm -mIp -4 0, L -consistency.
p

Proof. The result follows from Fact 1 and Corollary 4.

Corollary 6: If = o om n Var R c (0,a-),

then as n

Z -x 2/2
(34) Elz( n l - -CO4 ~ll dx,

n
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and for any positive odd integer j < p,

(35) E(Z ( Zn +li m))j 4 0.
nZ n

Proof. Since as n 4

Z z n+1 M) D 0 2 )

(36) Z ( m N(0,an Zn

(See e.g. Nagaev (1967) or Dion (1974), the results follow from Theorem 2.

Next we shall establish a result analogous to Theorem 2 for T n . We need

the following elementary lemma.

Lemma 1: Let V,Vl,... be iid positive random variables with P[V > 1] = 1

and EV = m > 1. Then for all q 1 1, there is an a with a c (0,1) such

that

(37) sup E(v
n>l l+ V n

Proof. By the strong law of large numbers, as n c o

(38) n 4-< 1VI+...+V n  m
1"n

with probability one. Since (n/(Vl+...+V n ))q < 1, as n

(39) E( n )q i _
VI+-..+V mq

by the bounded convergence theorem. Therefore there is an a < 1 and an

integer n0  such that for all n > no

(40) E( n )q *(40 +.. .+V "

Since E(n/V1+...+Vn))
q < 1 for n = l,...,no, take

1* Ev n o  )q)

(41) a = max(a ,E )q,...,E
V1  1 n

and the result follows.

e
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Theorem 3: Assume that ERP for some p > 1. Let a =max(:-,i-) Then

for any r <p

(42) { , n > 1} is uniformly integrable.

n-i

Proof. Let r be less than p. Choose s such that s > 1 and r < s < p.

Then by Minkowski and Holder inequalities

(43) [lT n1 -u-mT nSJi/S

zn-i

E (E( Zk- 1 J jZk-mZkl sji/s
k1 n-i Zi

< kl( 4j jS ZE Zk'-1 IP]i/p

Let q =asp/(p-s). Then by Lemma 1, for some 0 < (x < 1

Zkiq E(E((' '-1'LL2)'IF
( Zn~ Z n_2)

n-l n-1n-2

(44) E (k) E(( n-)"IF)

Zk-lq <n-k

By Theorem 2, sup(EI kakiIP)p < C for some finite constant C. Therefore

from (43) and (44), we have
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[T n 1 -u-mT nS] 1/s

k=l - S

andlar 7 Il~slfo o1' ERn- orsome) p>i and a ax ' then for any rp,

(46) (ITn1-a nl -m)Irn 11 is uniformly integrable.

Proof. In view of

(47) T1 aT -u Tn iu-mT
n T -mI a

n zn-1

the result follows from Theorem 3.

Corollary 8: If ERP < -for some p >2 and Var R acO-,te o

any r <p, as n 4c

(4) 1 T n-u m 1rr. IIr -x2/
(48 ET 2( nl -mIr*r ---------d~x

n Tn 2t

and for any positive odd integer j < p,

T -u
(49) E(T ( T~ -m)) 0.

Proof. Since as n4

T -u D2
T n+1 m) -- N(0, a 2,
nl Tn

(see e.g. Dion (1974) or Jagers (197.L)); the result follows from Corollary 7.

Remark 4. We conjecture that the r in Theorem 3 and Corollaries 7 and 8
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can be improved to p, in which case p > I can replace p > 1 in Theorem 3

and Corollary 7; and j < p can be chc nged to j < p in Corollary 8.
2

In the iemainder of this section we shall assume that Var R = a whichK;: 2
is finite and positive. We shall study the following estimators of a2:

-2 1 n Zk Zn 2I i) a = £ Zk_(--)-
n n n k=l -z Z

k=1 ( k-l n-1
(50)

, 2 1  Zk 2i (ii) an =- n k ( -l
n n k=1 k-1lzk-

The consistency of these estimators is given in the literature and we collect

them into the following fact.

Fact 2.

-2 2(i) Heyde (1974). As n ,a -* a with probability one.
n

(51)

(ii) Dion (1975). As n , n a 2 in probability.
n

In the following, we shall study the L -consistency of these two estimators
p

2
of a

Theorem 4: Assume that ER2 p < for some p 2 1 and let a = max(lp).

Then

1-a -2 2p(52) {In -a ~2  )I p , n > 1} is uniformly integrable.

Proof. For each k > 1,

(53) E(Zkl(Z m)2 2 IFkl1
k-1

":"1 I (z 2 2
- Z 1E((Z ZkIFk_) - a2 = 0.

k-1

Since ER2p < , Theorem 2 implies the uniform integrability of
.- Zk

{(Zk I z - m)2 )p , k > 1}. By Lemmas 1 and 2 in Chow and Yu (1984),
k- 1

r::-

r' - , ,, -'-' -, =, - ', - : - ",{<' - ; , -,,", .'- ". - - - . , .-.-.- , . .. .. - - " .. ' " .. • .... . . .- - ..-
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(54) a (Z k k- z M) 2p n >2 j f 11 is uniformly integrable,
n k=1 k-i

which is t'.e desired result.

2p 1i1Theorem_5 Assume that ER2  < for some p 1, and let a =max(-,--).

Then

(55) ~ 1 3a 2)1P, n > 11 is uniformly integrable.
n

Proof. We decompose

(5) 1-a~ - 2

iZk 2 2 Zn 2 ZZ
a E~ (Z k-l(Z - n)a) + (m - Zn kl1
n k1k-1i- k=l

n z mZ 1
-2 "'(Z -z m)( H

kl k k-i Zn~

In view of Theorem 4, it suffices to show the uniform integrability of

ai {Izj - z) ~ k- JP, n > 11 and
n Zn-i k=i

nii aI k=1 Zk -"k-i n-1..n~ }

For (i), by Theorem 2 (for some finite constant C) and by Lemma 1 (for some

CX E (0,1)) and (44) we have

mZ -Z n 7
(58 E(1 n-i n 2 p -)

nap kl n-i

n k- m n- n p

nZk-i)P < C n ___l /

-ap z - ap Z -

n1 I n- n I n
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(EC (n-k)/p~ 0,_asn_-
ap~ a (,_l/P)P a

yielding (i). For (ii), by the same results used for (i), we have

n (Z -mzkl (Z -mZ ) Zl
(59) na El E~ p n

n ap k=l 4,Z n-i
k-i n-i

_____ k-1 P(nl 2 Zk )pl 2~
- ap z Z~

ki n-i

nz k
nap 1 n-i -nap1

yielding (ii). And this completes the proof.

Corollary9: If ER 2p < for some p 1 , then

-2 2p(i) {la -a 1, n > 1) is uniformly integrable

(60)

n a 2 1,n > 1} is uniformly integrable.

2 -2 -2Proof. Let a be either or or a .Since a < 1,

ni1-a la2 a 2~ > l0 2- 2~ and the result follows from Theorems 4 and 5.

Coroiiary 10: If ER 2p < for some p 1 , then as n 4

(i) El
2 

-
2

1  0, L -consistency,

* (61)

(ii) Eja2  a2 lP 0, L -consistency.
n p

-2 2
Proof. By Fact 2, a nand a n converge to a in probability as ni 4 ~

Together with this, Corollary 9 gives the L -consistency.
p

1LrI 7e~'
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Corollary 11: If ER2  < for some 1 < p < 2, then as n-

(i) Efn ' a 2n j o
(62) -

(ii) Ejn P -2 2 4P0.

Proof. By Lemma 1 of Chow and Yu (1984) and (53), as n-

(63) Ejnl P (2 2)Pr ~ 0n

By (56), (58), (59) and (63),

E -2 0
2)J 0.

Corollary 12: If ER2  < for some p 2, then as n

x 2 /
(64) Eln 12(a 2 - 2 )P 2 

2 2a2p J xj e dx

and for any positive odd integer j p,

(65) E(n( 2 2r j 0
n

Consequently as n 4

-2 2 1
(66) E(a) a + o(-),

i.e. the bias is of smaller order than n, and

2
-2 2a 1

-(67) Va ra Cn) n + oC-).

Proof. 11eyde (1974) has shown that as n co

(68) n (a2 - 02 ) -4 N(0,2a 4,n

By Theorem 5, the results follow.
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S<rt r- . ItOre St.'92 Ploy;ti _'ia-raO'r So- J_n__

"/ t~~~..- 0 Oi: ,.l (__'';,-i<- ci of the Ztlc.; (1969) approa ch to hi nary compalrisons,

->.]1.l c V. E,-:pu'] t-. thc nu:'ho: of tri ais cu treatment i, i =A or F, until the

fi 5 fnib<rL is C'iCL >vel. So the initial generation does not correspond to

z:,, sr" c7 tia !s Lhut cnly to the n,:-er of success runs to be observed in the

1..i f_L c i,.-zatio.i of samp~lingL. on treatnent i. The responses, R have

-c distrilution with finite mean m. = /q i and finite variance

I c-(1-i )/.i whcre qi is the probability of failure. 'The ASN is

.. 1 n(l--c. over the first T+1 u.i trials correspondinyc_ to genera-

t ions throuqhg n. Note that at least nu. trials are run on treatment i,

1,:1 t is5n -o unopir bournd on the actual nun'mer of trials for any

n > 1.

,:o erti l-r tor of p. = 1 - pi-, p. = 1 - 1/mi , reduces to

( V -u )/(T u. which eqals the cumulative number of successes

CU 'id A ky t.: r:un,'r of treatments on tre tment i in this scheme. The

ac:.iA: of i'iferior treatment selections is small if n is large almost

surely arn in thum Lp sense. A'n approximate distribution is available.

In
Sincr W .(=li, Zn/mi) has a gamma distribution with moment generating

1n

sT. -u.
Siof.._. )i(1 +1s/u.)i  1, s > 0, (Harris (1963)) 2u.W. has a chi-+ 

1

lo.e, distrilrtion with 2u. degrees of freedom. Thus thc ratio,
" C7. .(o)'j"/Q ( -i) has an alpproxi,,atc- F distribution wit 2uA an! 2u

n-l n-
rce., cf frcdom, wlhere the constants are Ci (n) = pi(qi )/(l - qi )

., .by Corollary 2, 1 /In 0((qA/q,) ) with probability

,. ]-o. (A;.>, 05P 0 > '.

Ei :, 6 r5 th,t convergenice obtains as well.

* .p

I -ASo-i % -..i - -) --.. -< - ? .2 ., L ... ' ... -< -i i 'i -) . ) i i - 7 ; -. ; ) ." : .> ;; •< .< i ' "' .< -: < -) i '-'
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Theorem 6: Assume that 1/qA =MA > MB~ 1/qB If P[R1 =X1 (l-q.) ql

x~l2.. i=A,B, then for any p>O0, as n-

Bz
Ei( 4) 0,
z
n

(ii) T(-)P 0

n

Prcof. without loss of generality, assume that UA =UB =1 and that p is

an integer. Then

-( B P xP(l-q n)x-lq n
n x=l

nx-l n n< x(x+l)... .(x+p-1)(l-q) q = l q
x=l

E 1 L~ -(- n x-l qn
zA x=1 xp Al~ A
n

n nx-1ln 1 n x-l n

x=l X ~ x=p~l xp

n 1 n x-l n

P+1

S Cnq\n lcg q

< P'-A 1 n , for some constant C.

Hence as n w

7F

(i) E(' )~ = E(ZBP E(~~)
-A n A

n n

Next

n1



z<((E(ZoB)P)/p +...+(E(Z )B )p) !/p)p

(1+ (p'cjp) I/p+ ..+(ptq-np l/Ppp

p- + q qn

-1 -(n+l)p

qB - (qBll)

T'
E(+1P < E(TB+I )p E 1 p

(ii) -T ( A

zn
Inp

[ 1 n CnqAP log qA

1I P (n+l)p ("'A - n 0 as n .
- (qB - )

0 q B -q A

-dr dA -dB

Corollar 13: Assume thatmB qB for some positive

integers d and dB
A B1

(i) E(Z A) 0 as n-*
nd ndA

(ii) E(TB /'?" ) 0 as n-*w
nd A ndA

Remark 5. The delicacy of the above result is noteworthy. It seems plausible

that a similar convergence obtains in non-geometric cases but no proof is

known.

F" mark 6. Certainly other selection procedures exist for the present case,

Bather (1981). Ilowever direct comparisons are difficult because the sample

sizes are random in regenerative sampling but are fixed in Bather's study.

The actual implementation of the trials is only mildly constrained by

i

4' . . .

I I ,:- v : , -.i,.-,-- .-. ..----. -. . - .- --, .- - _-, i. , -< , --" " ",_.
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by the requirement that the generation points TA, T n be reached o,.

both treatments for some fixed value of n. It is interesting that if it is
assumed, in addition, that every generation point Ti .... n

be reached on both treatments i = A,B before proceeding to the next, then

the present scheme can be visuclized as an adaptive iteration of the Zelen

scheme. In particular, let ( B=,Zl) PW(UA,UB) denote the number of trials

on the two treatments in a Zelen type experiment which is stopped when uA

failures are observed on treatment A and uB failures are observed on

treatment B. Then the successive sample sizes are generated recursively by
AB A B A B

k(,Zk) = PW(Zk I, Zk), k = 2,...,n. The urn scheme

presented in Section 2 can be adapted to the present case in which the total

response is spread over a number of trials. As before, select a ball from

the sampling urn and note its type. Administer the indicated treatment and

observe the response. If it is a success a ball of the corresponding type is

added to the holding urn and the selected ball is returned to the sampling

urn. If a failure is observed then the selected ball is simply transferred

4 to the holding urn. As before, a generation is complete when the sampling

urn becomes empty.

In view of Fact 1 in Section 3 as applied to the present iterative

play-the-winner design, it is plausible to base a test of hypothesis about

the failure rates q, on the number of successes observed over n. sampling

generations, i A,B. In particular, f,-r positive integers nA,nBI a test is

proposed for

nA  n nA n
(69) H qA > qB vs H : A Bc:

based on the conditional distribution of S= nA uA given S SA + SB ,

inA
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B B B
where S = Z - u . The random variables SA and S are independent and

nB

represent t-.e number of successes on treatments A and B over trials

1,2,...,TA and 1,2,...,T n  respectively, if nA = nB 1 and uA uB f

the test is equivalent to that of Zelen (1969).

Since the samples on the two treatments are independent and since the

geometric distribution is preserved under the composition of probability

generating functions in the Galton-Watson branching process (Harris(1963)),

sA'sB and S have negative binomial distributions and the conditional distri-

bution can be presented explic:itly. For r a non-negative integer and

k = 0,1,...,r,

(70) g(klr) P[S = kISA= r]

k+uA-l r-k+uB- r J+UA-1 r-j+uB-1:'.) / E ( U _ )( U _ ) x j

UA-l UB-i j=0 A

where X n(-qA )(-q

nA
nA n._

Under qA, = 1 and the distribution with r a nonnegative

integer and x = 0,1,...,r, is

x
(71) G(xlr) -P[S A <  xIS = r] = E g(kJr).

k=0

The a-level test is proposed:

(72) Reject H in favor of H1 if and only if G(SAIS) > 1-.

In the simplest case, uA = uB 1, the power can be bounded as follows:

Theorem 7: Assume that uA = uB =1, nA and nB are positive integers and

0 < a <. Thenwe
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(7 3 ) ( q -B -r n A e -1r
A 

". 
B B l A ) -i

< (1-qA )(q + (l-q )(q -

where e = -1 and K = P[G(SAIS) > i-z].

Remark \. The lower bound is exact if a = , and for a small, approximately

(74) q < K < /q 1 ~A

Proof. Since UA = 'B = 1, G(xlr) = (x+l)/(r+l), x = 0,1,...,r.
Thus K = P[e(SA+I) > B] Since

(75) P(Reject H0ISB= k] = p[sA+ 1 > ek]

=(I-q nA [ k

and the latter is bounded below by (1-q and above by (-qAk

BK is seen to satisfy the bound stated upon averaging over the values of S

. In view of the interesting outcome of the clinical study by Bartlett et al

(1985), Cornell et al (1986), performance values with qA close to zero are

presented in the Table. Of course, the power is conserved upon truncation of

the favored treatment since the success counts are cumulative. So the null

hypothesis could still be rejected without ever completing a generation on the

better treatment. If it appears that qA= 0 may be true, as in the afore-

mentioned study, then the trial may be concluded at any point after the

specified generation point is reached on treatment B. Of course at least

* uBnB trials shall be run on treatment B with regenerative sampling.

S

B -B

Ix
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TABLE

Iterative Play-the-Winner

nA ~uA =uB =1, qA .04 and q L

0 A ~B VS B

ASNT\ 25

n K
nB (BB ASNB cc--.01 a=cc. 05 c--. 50

LB UB LB UB

1 .80 1.25 .80 .84 .88 .92 .99

2 .64 2.81 .64 .67 .76 .80 .98

3 .512 4.77 .52 .54 .66 .69 .96

5 .328 10.25 .33 .35 .47 .49 .92

8 .168 24.80 .17 .18 .27 .28 .83
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